

INTE D

Cobourg Drinking Water System Master Plan

Presented by Dan Campbell, Senior Project Manager June 2021

Introductions & Purpose

The purpose of this meeting is to:

- Provide a snapshot of the existing Cobourg Drinking Water System
- Share an overview of the technical analysis that informs the master plan recommendations
- Provide an outline of the master plan recommendations

Dereck Paul President & CEO

Larry Spyrka Manager Water Capital Projects

Shawn Bolender Manager Water Operations

Adam Giddings Director of Regulation & Finance

Dan Campbell Senior Project Manager

Claire Wallis-South, EIT **Engineer in Training**

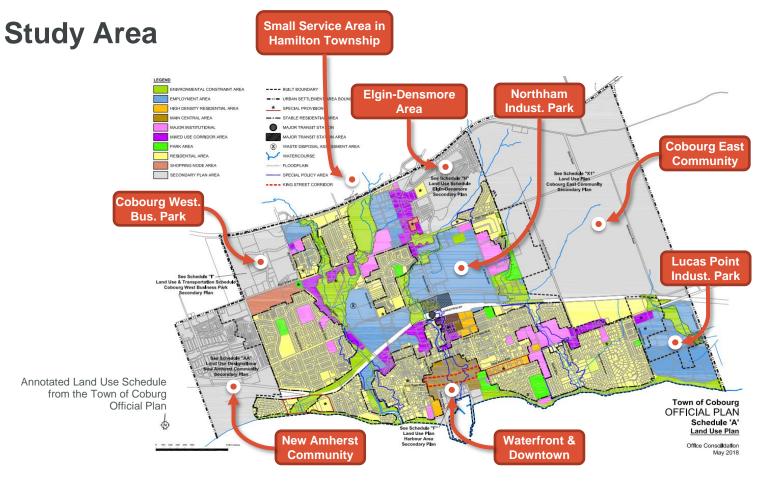
- Master Plan Purpose & Process
- Existing Cobourg Drinking Water System
- Water Demand
- Master Plan Recommendations
 - Water Treatment
 - Pumping and Storage
 - Water Distribution
- Wrap-up
 - Questions and Answers

Clarifier at Cobourg WTP

Master Plan Purpose

- 1. Provide an overview snapshot of the existing system
- 2. Forecast water demand associated with projected residential population growth and non-residential growth within the Cobourg urban/municipal boundary
- Identify system expansion projects that will be necessary to service growth and evaluate potential options
- Identify non-growth capital projects required to sustain the existing system over the next 10 years

Cobourg Zone 2 Elevated Tank on Strathy Road

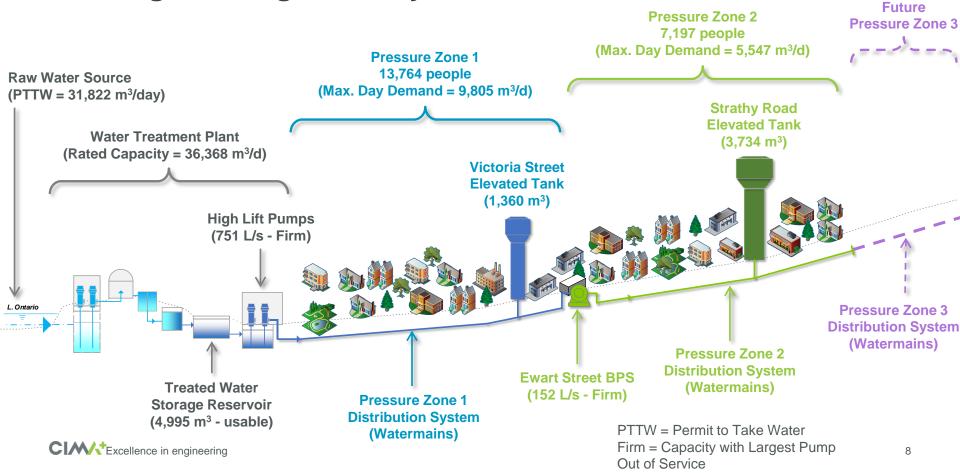


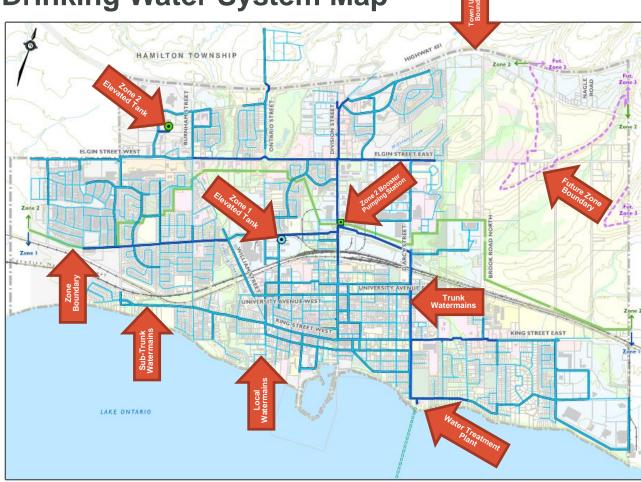
Watermain Installation on Mathew Street

Master Plan Process

https://youtu.be/79EKPBjoTVQ

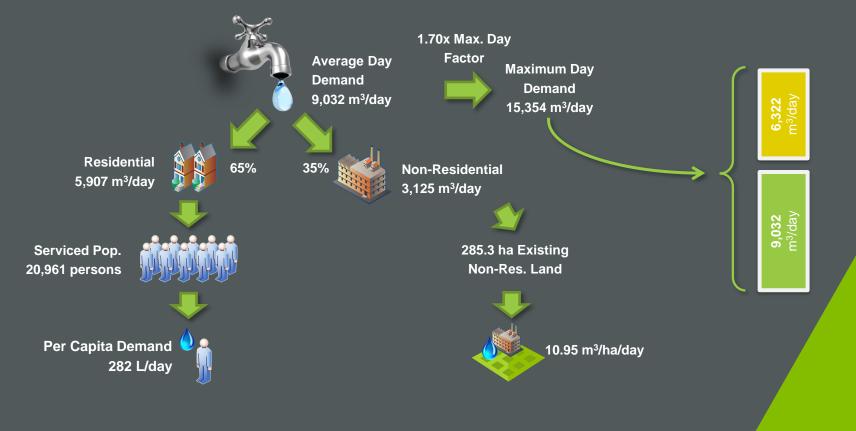
TM-1	Demand Projections, Design Criteria & Preliminary Capacity Evaluations		Í	
TM-2	Treated Water Storage Requirements		Í	
TM-3	Treated Water Pumping Requirements		í	Technical Analysis
ТМ-4	Water Treatment Plant Capacity & Preliminary Condition Assessment		í	Completed in 2020
TM-5	Distribution System Pressures & Upgrade Requirements		r	
	Cobourg Drinking Water System Master Plan	Draft		Early 2021
	Community and Stakeholder Consultation)	Recorded Presentation
	Presentation to Cobourg Council		5	2021
	Cobourg Drinking Water System Master Plan	Final	J	
MCEA	Municipal Class Environmental Assessment for Schedule B Projects			Future
				(Beyond 2021) 5

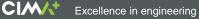


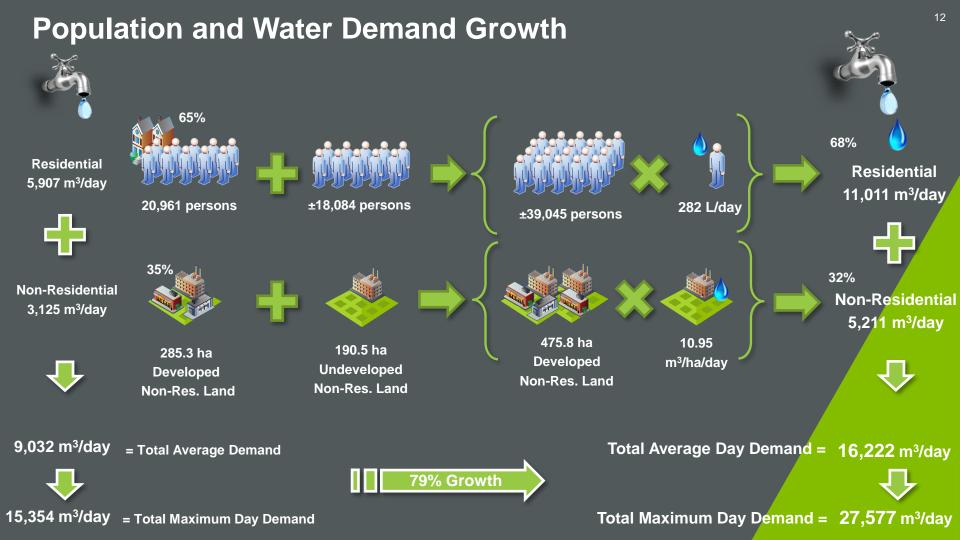

Existing System

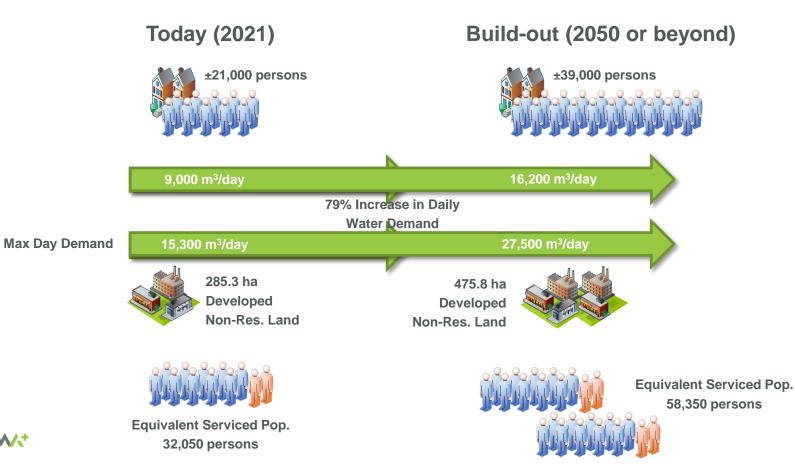
Existing Drinking Water System Schematic

Existing Drinking Water System Map



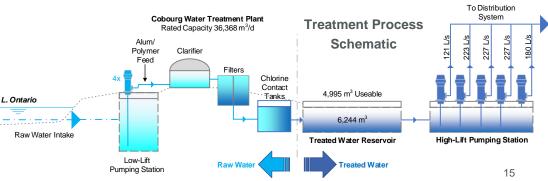



Water Demand


Current Serviced Population and Water Demand

Population and Demand Summary

Water Treatment Current & Future Needs


Water Treatment Plant

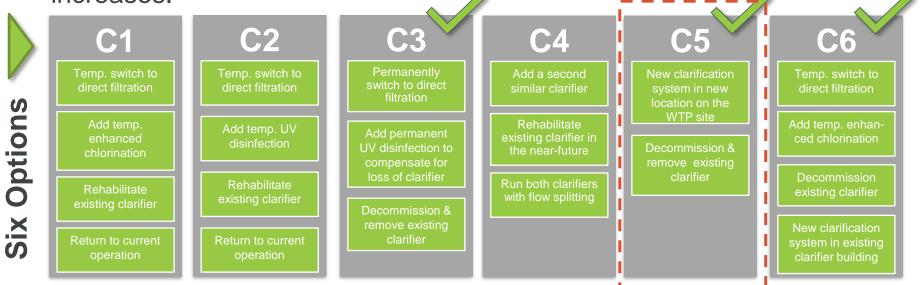
- WTP constructed in 1978 and upgraded in:
 - 1987 (pump house)
 - 2002 (chorine contact)
- As capacity utilization increases certain processes are "taxed" more heavily and greater uptime is required
- Ongoing investments are required to maintain condition and capacity of the WTP

Excellence in engineering

CIM/+

Water Treatment Plant Capacity

Net Delivery Capacity of Today (2020) Build-out (2050 or Beyond) ±32,700 m³/day ±21,000 persons ±39,000 persons $(90\% \text{ of rated capacity} = 36,368 \text{ m}^3/\text{day})$ 475.8 ha 285.3 ha -akeshore Di Developed Developed Non-Res. Land Non-Res. Land WTP Capacity **Expansion Not** 15,300 m³/day 27,500 m³/day Anticipated +47% of Net **±84% of Net** Delivery Delivery Capacity Capacity


WTP: Repairs, Improvements and Upgrades

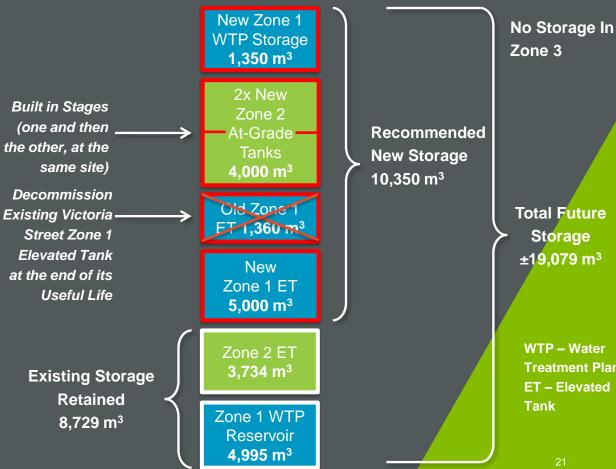
While there is no need for capacity expansion at the WTP, investments will be required to ensure that the existing WTP can continue to operate reliably up to its full rated capacity.

Clarifier Replacement

- The entire WTP is dependent on a single clarifier that is 42-years old and cannot be taken offline without shutting down the entire WTP.
- Flexibility for rehabilitation or replacement will decline as water demand increases.

Preferred Option C5

- Reduces risks associated with investing in existing clarifier building
- No investment in major temporary operating measures
- Provides significant future flexibility with respect to:
 - Choice of clarifier technology
 - Clarifier operation (multiple trains)
 - Addition of a third filter train to allow for filter maintenance



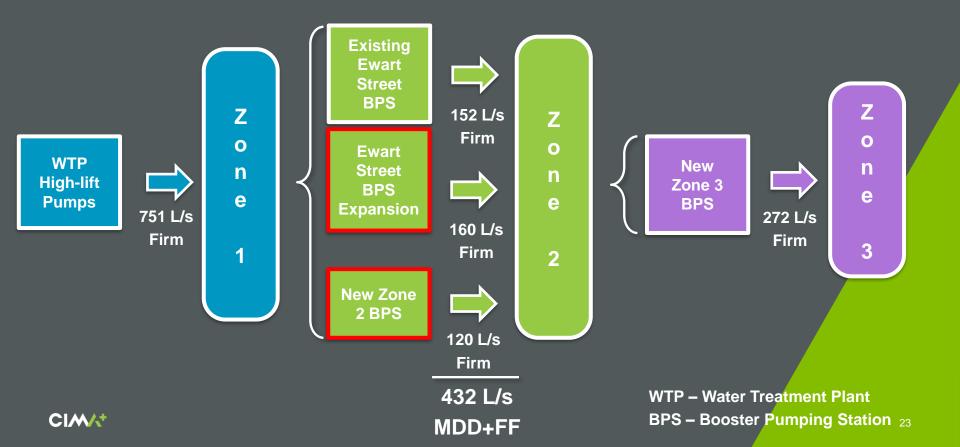
Pumping and Storage Current & Future Needs

Recommended Treated Water Storage Strategy

- 10,089m³ of storage currently provided in three facilities
- Relative to current design standards, there is a storage short-fall of ±2,500m³
- Inclusive of this short-fall, development to build-out will require ±8,900m³ of storage to provide a total of at least ±19,079m³

Pumping Requirements

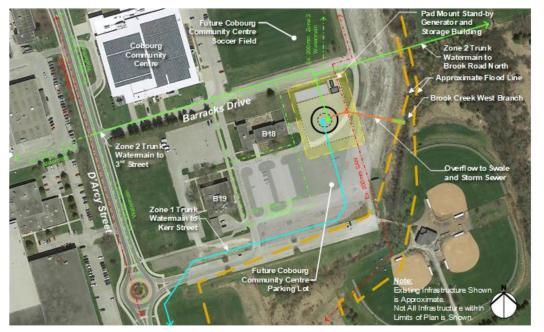
- Water Treatment Plant high-lift pumps at 751 L/s have sufficient capacity to meet all current and future pumping requirements for Zone 1
- Ewart Street Booster Pumping Station has limited reserve capacity to support continued growth in Zone 2
 - Can support approximately 2,225 additional people in Zone 2
- Most growth will occur in Zone 2 (or Zone 3) and as such, short-term and long-term expansion of Zone 2 pumping capacity is required
- Zone 3 will require its own dedicated pumping station



High-lift Pumps at Cobourg WTP

Piping at Ewart Street Booster Pumping Station

Treated Water Pumping Strategy


Zone 1 Storage & Zone 2 Pumping Location Options

Evaluation of Location Options

Criteria	Option	n 1A	Option 1B		Option 2		Option 3		Option 4		Option 5	
Site Availability	\bullet	1	0	0	•	3	\bigcirc	1	\bigcirc	2		4
Compatibility		4		4	•	3		2	\bigcirc	2	•	3
Environmental Factors		4		4		1		2	J	3		4
Technical Factors	\bigcirc	1	0	0		2		2	•	3		2
External Servicing	\bigcirc	1	\bigcirc	1		4	•	3		2	•	3
Economic Factors	0	0	0	0	•	3	•	3	\bullet	2		3
Score	11		9		16	6	13	3	14		19)
Overall Rank	5 th	ı	6 ^{tt}	ı	2 ⁿ	d	4 ^{tt}	ı	3"	e e	1 ^s	t
	Lea Prefe								Most Preferred			
Legend		\bigcirc	0 pts		1 pt		2 pts	•	3 pts		4 pts	

Preferred Location Option

Option 5: Cobourg Community Centre Site Plan

Advantages of the Site

- Land is owned by the Town of Cobourg
- Similar institutional type developments exist adjacent the site
- Existing Zone 1 ET can continue to operate during construction
- Well positioned in terms of proximity to Zone 2 trunk watermains
- Not impacted by mapped Brook Creek floodplain

Disadvantages of the Site

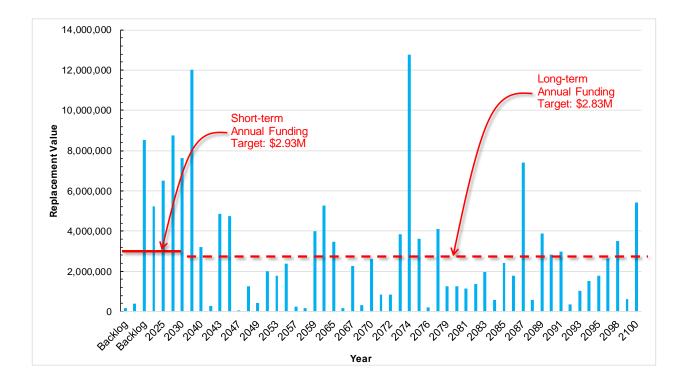
- Town of Cobourg will have to reassess part of the Cobourg Community Centre Master Plan
- Additional Zone 1 watermain length is required to accommodate the site

Pumping & Storage Project Costs (1-10 years)

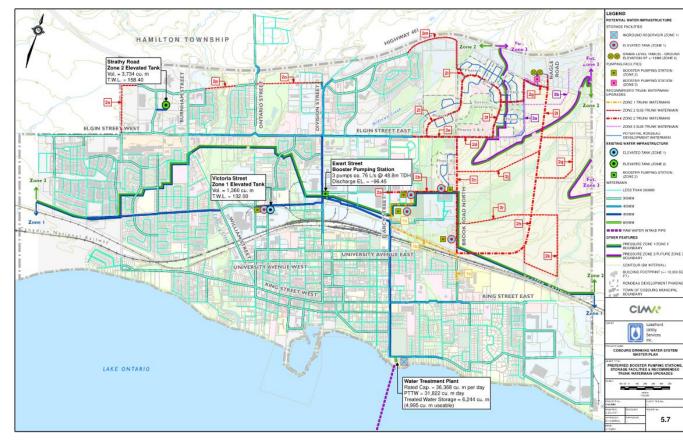
Costs Including Contingencies

Pumping & Storage Project Costs (10+ years)

Costs Including Contingencies

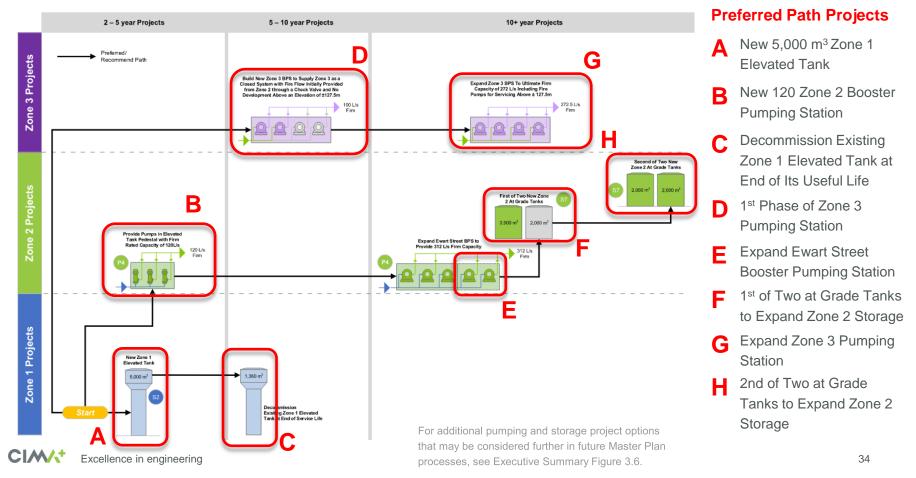

5

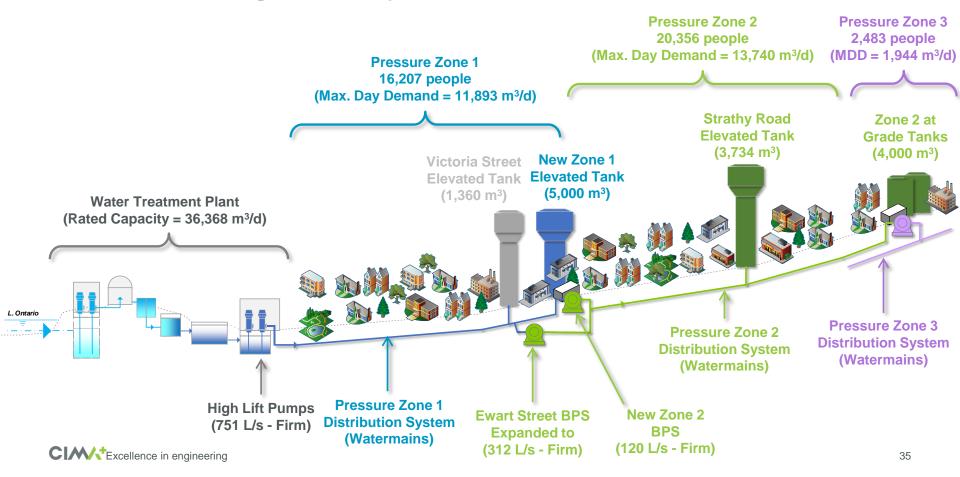
Distribution System Current & Future Needs


Watermain Age and Materials

Annual Replacement Forecast

Distribution System Expansion (trunk & sub-trunk watermains)


- Primarily growth driven in Zone 2
 - Most of these watermains will be 100% development funded
- Some Zone 1 upgrades to supply new pumping and storage facilities
 - Partially rate funded


Wrap-up

Preferred Pumping and Storage Projects Implementation Sequence

Future Drinking Water System at Build-out

Master Plan Related Costs Next 10 years

Values Are Rounded

Includes Forecast of Routine

Infrastructure Maintenance and Replacement

Project Category	Gross Capital	Rate %	Funded by Rates	Growth %	Funded by Development Charges
Watermain Renewal Projects (10-year program)	29,300,000	100%	29,300,000	0%	0
Watermain Expansion Projects	17,100,000	16%	2,800,000	84%	14,300,000
Pumping & Storage Projects	22,900,000	28%	6,412,000	72%	16,488,000
Water Treatment Projects	15,300,000	56%	8,568,000	44%	6,732,000
Total	84,600,000	56%	47,886,000	44%	37,214,000

Values Are Rounded

Master Plan Related Costs 10+ years

Does Not Include Routine Infrastructure Maintenance and Replacement

Project Category	Gross Capital	Rate %	Funded by Rates	Growth %	Funded by Development Charges
Watermain Expansion Projects	7,000,000	0%	-	100%	7,000,000
Pumping & Storage Projects	11,440,000	0%	-	100%	11,440,000
Water Treatment Projects	2,015,000	100%	2,015,000	0%	-
Total	20,455,000	10%	2,015,000	90%	18,440,000

What We've Heard

- Most responses agree with the preferred location for the new Zone 1 elevated tank/Zone 2 booster pumping station near the CCC.
- Those that indicate they disagree with the preferred location for the new Zone 1 elevated tank/Zone 2 booster pumping station near the CCC (i.e. Option 5) have a preference for Option 4 with facilities to be located on future development lands further east (i.e. Option 4 within Phase 2 of the Rondeau/Tribute development).
 - While technically possible, this option (Option 4) is not preferred for the reasons previously outlined in the location evaluation.
 - This option (Option 4) would also likely be at the expense of land within the development that would be dedicated to the Town for recreational uses.

Survey Responses Received Through Engage Cobourg after Public Information Presentation

Response	Preferred Site for New ET / BPS Near CCC			
Strongly Agree	2	1		
Agree	6	6		
Disagree	-	-		
Strongly Disagree	1	1		
Don't Know	2	2		
Total Responses	11	11		

What We've Heard

- Impacts (increases) to water rates, wise use of financial resources and accessing alternative funding sources
 - Allowances for the majority of the projects identified as required within the next 10-years were incorporated in the most recent water rate study, which was presented to Council in January of 2021.
 - Most of the projects required beyond the 10-year time horizon are development driven and will be funded largely through development charges.
- Actual growth may not justify the recommendations presented in the master plan
 - The master plan provides a "road map" to requirements at full build-out so that decisions that are made as development progresses can be aligned with long-term needs. Beyond the projects that are identified as necessary today, the timing of other recommended projects would be dictated by development occurring and would not occur until justified by water demands.
- Pumped storage (inground reservoirs) instead of floating storage (water towers)
 - Some floating storage is beneficial to avoid the need for continuous pump operation and provide for maintenance of pressure without pump operation.
 - Reservoir options are possible, but generally have more operational complexity. Either they require more
 pumping facilities (pump-in, pump-out) or they must be placed remote from the area they serve at a higher
 elevation.

What We've Heard

- Climate change impacts on water use & lake levels
 - Water demand forecast does not consider a further trend of additional water conservation in Cobourg as per capita demands have declined in the past and this may be offset by climate change related increases.
 - Actuated gates have been installed to protect the low lift pumping facilities on the shoreline from the effects of high lake levels.
 - The depth of the intake is adequate to not be impacted by low lake levels.
- Aesthetic design of new buildings & facilities and opportunities for additional public uses
 - This can be addressed through detailed design of the facilities. Additional public uses on the sites will have to be balanced with considerations for safety of the public and necessary security of the infrastructure and water supply.
- Backflow prevention and exposure to potential sources of contamination
 - LUSI and its partners monitor the security of the water supply and plan for its protection through the source water protection process
 - A County-wide backflow prevention by-law has been created and is being applied to certain new development projects. The next steps include education sessions for the public and stakeholders to outline timelines for backflow prevention implementation and how backflow prevention requirements will be enforced.

New facilities will be designed to mitigate against potential sources of contamination local to the sites.
 Excellence in engineering

Next Steps

Schedule B Projects

- New Zone 2 BPS New Zone 2 At-Grade Tanks
- New Zone 3 BPS
 New Zone 3 BPS
- New Zone 1 ET at
 Preferred Site
 inter Watermain Projects not
 within an Existing Road Allowance

Presentation Summary

Significant pop. and demand growth (+79%) to build-out

An existing storage deficit and increased demand require new storage facilities in Zone 1 and ultimately Zone 2 Existing pumping capacity can support some growth (2,220 ppl) before new and expanded pumping facilities are required WTP has sufficient capacity to support growth to build-out, but requires investment to sustain that capacity Renewal and expansion of the existing distribution system represents a significant cost funded through rates and development

Questions...

Thank You!

